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Variable Structure Control With Application to
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Abstract—In this paper, a decentralized discrete variable struc-
ture control via mixed 2 design was developed. In the
beginning, the 2-norm of output error and weighted control
input was minimized to obtain a control such that smaller energy
consumption with bounded tracking error was assured. In addi-
tion, a suitable selection of this weighted function (connected with
frequency) could reduce the effect of disturbance on the control
input. However, an output disturbance caused by the interactions
among subsystems, modeling error, and external load deteriorated
system performance or even brought about instability. In this
situation, the -norm of weighted sensitivity between output
disturbance and output error was minimized to attenuate the
effect of output disturbance. Moreover, an appropriate selection
of this weighted function (related to frequency) could reject the
corresponding output disturbance. No solution of Diophantine
equation was required; the computational advantage was espe-
cially dominated for low-order system. For further improving
system performance, a switching control for every subsystem was
designed. The proposed control (mixed 2 DDVSC) was
a three-step design method. The stability of the overall system
was verified by Lyapunov stability criterion. The simulations
and experiments of mobile robot were carried out to evaluate the
usefulness of the proposed method.

Index Terms—Decentralized control, 2-optimization, -
optimization, mobile robot, variable structure control.

I. INTRODUCTION

I N THE PAST three decades, the properties of the intercon-
nected systems have been widely studied [1]–[5]. Owing

to the physical configuration and high dimensionality of in-
terconnected systems, centralized control is neither economi-
cally feasible nor even necessary [2]. Because the decentral-
ized control scheme is free from the difficulties arising from the
complexity in design, debugging, data gathering, and storage re-
quirements, it is more preferable for the interconnected systems
than a centralized control (e.g., the decentralized control for a
mobile robot [6] or a legged robot [7]). However, due to the ex-
istence of interactions among subsystems, modeling error, and
external load, there are not many efficient decentralized con-
trols for the interconnected systems. For simplifying the con-
troller design, a linear discrete-time dynamic model for every
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subsystem is first obtained by the recursive least squares pa-
rameter estimation. This kind of modeling is easier for the in-
dustry applications. However, every subsystem is assumed to be
a linear dynamic system will be a challenge to obtain a decen-
tralized control for the interconnected system.

Mixed control problem has become a popular
research topic in recent years (e.g., [8] and [9]). In engineering
practice, the control input is designed not only to eliminate
the disturbance but also to minimize a desired control perfor-
mance when the worst disturbance is imposed. In this situation,

-optimization is more appealing for control engineering
(e.g., [10]). In the other way, -optimization is an important
robust control methodology for diminishing effectively the
effect of disturbance (e.g., [11]). Under this circumstance, the
mixed control problem is developed. It is also known
that variable structure control contains several advantages, e.g.,
fast response, less sensitive to uncertainty, and easy implemen-
tation [12]–[15]. In this paper, the mixed optimization
and variable structure control are merged to improve the robust
stability and robust performance.

In the beginning, the -norm of the output error and
weighted control input is minimized to obtain a control such
that small energy consumption with bounded tracking error for
every subsystem is achieved. In addition, a suitable selection of
this weighted function can attenuate the effect of disturbance
in a specific frequency range of control input. An appropriate
application is the control problem of mobile robot with the bat-
tery power (e.g., [6]). However, an output disturbance brought
about the interactions among subsystems, modeling error, and
external load deteriorates system performance or even results
in instability. In general, a mobile robot is controlled by a de-
centralized control to simplify the implementation of a digital
control. However, the interactions of front and rear wheel,
uneven road condition, often bring about a poor performance
or even instability. In this situation, the -norm of weighted
sensitivity between output disturbance and output error of
the th subsystem is accomplished to attenuate the effect of
output disturbance. Moreover, a suitable selection of weighted
function can reject or attenuate the output disturbance in the de-
sired frequency range. No solution of Diophantine equation is
required; the computational advantage is especially dominated
for low-order system. It indicates that a microprocessor-based
control is realizable for the proposed control. Although the
effect of output disturbance in a specific frequency range of the
th subsystem is attenuated or rejected, a better performance
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can be enhanced by a switching control based on the Lyapunov
redesign [16]. Finally, the stability of the overall system is
verified by Lyapunov stability criterion. The simulations and
experiments of a mobile robot are also arranged to evaluate the
effectiveness of the proposed controller.

II. PROBLEM FORMULATION

Before describing the control problem, a mathematical no-
tation of this paper is introduced as follows. A discrete-time
signal at a sampling interval (i.e., ) of a continuous signal

is represented by where denotes
the sampling interval. A polynomial representation is defined
as follows: , where

for denote bounded coefficients, stands
for the system degree (i.e., if , ),
and denotes the backward-time shift operator [i.e.,

] or a complex variable in the z-trans-
form. Hence, the z-transform of a discrete-time signal
is denoted by . If and it is called
monic polynomial. The notations of and
denote the stable and unstable part of , respectively.
Without the loss of generality, the polynomial is
assumed to be monic (i.e., ) to obtain a unique
factorization. Define
where , the set consists of all analytic functions

in . A rational function in is inner if
for all , and is outer if has no zeros

in . For any rational functions and
in if is inner function and
is well defined, then . A
rational function multiplied by an inner function preserves
the value of the norm [17]. The polynomial

is a stable polynomial. Then the rational function
is a stable, causal, and all-pass operator,

i.e., for . The notation
is defined. The symbol

denotes a polynomial with time-varying coefficients
which are bounded for all time. The upper script denotes the
th subsystem of an interconnected system.

It is assumed that a linear dynamic interconnected system is
expressed as follows:

(1)

where denotes a linear
time-varying dynamic system of the th subsystem,

stands for the
interconnection stemming from the other subsystems,

, and ,
denote the system input and the system output of the th sub-
system, and represents the nonlinear time-varying
uncertainties.

In order to design an effective decentralized controller for
an interconnected system, dynamic models are required. The

pseudorandom binary signal (PRBS) with suitable amplitude
and period is employed to drive each subsystem of the inter-
connected system at one time. Then the input and output pairs
of data , are achieved. These
input/output pairs are individually fed into the following least
squares parameter estimation algorithm:

(2a)

(2b)

(2c)

(2d)

where , the initial value of , is
large enough, the system degrees , of the th subsystem
are chosen based on the prior knowledge of the subsystem. After
the model verification, an appropriate learned model for the th
subsystem is expressed as follows:

(3)

where the polynomials and for
are coprime. Then the interconnected system

(1) is rewritten as the aforementioned subsystems with output
disturbance ,

(4a)

where

(4b)

The above output disturbance is relatively bounded as follows:

(4c)

where and , , are bounded. In Section IV,
the upper bound of and , , is addressed
for the stability of the closed-loop system.

The reference input to be tracked for the th subsystem, i.e.,
is assigned as follows:

(5)
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Fig. 1. Control block diagram of the ith subsystem.

where and for are coprime.
The proposed control of the th subsystem is assumed as the
following form (see Fig. 1):

(6a)

(6b)

where is caused by the interactions, modeling error, and
external load; denotes the feedback output of the th sub-
system; the polynomials , , and are
found to achieve an equivalent control of the th subsystem; and

represents the switching control of the th subsystem.
Assume that the input/output relationship between and

for a stable reference model, is written as follows:

(7)

where and for are coprime,
and is a stable monic polynomial with degree .
The purpose of using a reference model is to shape the response
of the closed-loop system. Define the following output error of
the th subsystem:

(8)

Then the response of from the inputs , ,
is accomplished from (4), (6), (7), and (8), i.e.,

(9a)
where

(9b)

(9c)

(9d)

The polynomial denotes the characteristic polynomial
of the closed-loop system of the th subsystem

(10)

For synthesizing the problem, two cost functions in the
-norm and -norm spaces are defined as follows (e.g., see

[10] and [11]):

(11)

where the weighted functions and denote
two suitable rational functions; and are
the pulse transfer functions of and , respectively.

The objectives of this paper are described as follows (cf.
Fig. 1): 1) the equivalent control [i.e., the polynomials ,

, and ] is obtained by the satisfaction of the
following two requirements: a) For , the
cost function is minimized; b) for the cost
function is simultaneously minimized; and 2) based on
the Lyapunov redesign, the switching control (i.e., ) is
designed to enhance system performance.

III. MIXED DESIGN FOR DECENTRALIZED DISCRETE

VARIABLE STRUCTURE CONTROL

There are three subsections for the mixed design
of decentralized discrete variable structure control (mixed

DDVSC).

A. Minimization of

For , the following results are obtained
from Fig. 1.

(12)

(13)
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Substituting (5), (9), (12), and (13) into (11) yields (14), shown
at bottom of page, where
and the zeros of monic polynomial are in .
Based on the norm-preserving property of the inner function,
it is immediate from (14) that is reduced to (15), shown at
bottom of page. Let

(16)

where the polynomial of does not have zero on the unit
circle. The following lemma gives the summary result of this
section.

Lemma 1: The optimal controller for the cost function is
achieved from (10), (17), and (18), where is obtained
from (A6) and takes the factorization of in (16) for an
appropriate weighted function

(17)

(18)

where is a stable polynomial. The corresponding min-
imum cost function is given as (19).

(19)

Proof: See Appendix A.
Remark 1: In fact, the coefficients of the polynomial

are obtained from the following matrix equation:

...
...

...
...

...
...

(20)
where

Remark 2: The weighted function denotes fre-
quency weighting (i.e., , where )
of control input. In general, a high-pass feature is assigned to
attenuate the high-frequency response of control input.

B. Minimization of

In this subsection, the task is to find the polynomials
and such that the optimal is obtained. According
to the concept of the previous papers (e.g., [18]), the optimal

must satisfy the following interpolation
constraints:

(21a)

(21b)

where , and

denote the zeros of and , re-
spectively. Then the following lemma is given to explain the
result of the minimax optimization.

Lemma 2:

1) The optimal , which mini-
mizes , is of an all-pass form:

if

if

where the polynomial is monic and stable.
2) The constant and are real and

are uniquely determined by the interpolation constraints
(21). Furthermore, the minimized
is given by

Based on the result of Lemma 2 and the constraint (21a), the
following equation is achieved

(22)

where , is
a stable polynomial, and contains the zeros on

for rejecting the corresponding output disturbance
(see Remark 3). Furthermore, the constraint (21b) gives the
following result:

(23)

(14)

(15)
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Fig. 2. Response for the controller design only based on H -optimization with W (z ) = W (z ). (a) y (k)(� � �) and y (k)(�). (b) u (k).
(c) y (k)(� � �) and y (k)(�). (d) u (k).

where and . Or, rewrite
(23) as

(24)
By the solution of and from (24), the following equa-
tions are accomplished from (9c), (22), and (23)

(25)

(26)

Comparing (25) and (17) gives

(27)

(28)

where is a stable polynomial. Then from (25)–(28)

(29)

(30)

Substituting the relations (28), (29), and (23) into (10) yields

(31)

From (18) and (28), the polynomial is attained as
follows:

(32)
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Fig. 3. Frequency responses of W (z ) = W (z ) and W (z ) =
W (z ). (a) W (z ) = W (z ). (b) W (z ) = W (z ).

That is, the control polynomials
for the mixed optimization in (11) are attained from
(30)–(32).

Remark 3: To reject the output disturbance, the polynomial
must contain the corresponding modes. For example,

is used for
rejecting the output disturbance ,
where , and are unknown but bounded constants. In
general, an all-pass feature with infinity dc gain is assigned to
reject an output disturbance including a constant and the other
frequencies.

C. Switching Control for Enhanced Robustness

The proposed switching control is designed as follows:

if

otherwise
(33)

Fig. 4. Output response of mixed H =H control for d = 0, i = 1; 2
with the weighted functions W (z ) = W (z ), i = 1; 2,
W (z ) = W (z ), and W (z ) = W (z ). (a) y (k)(� � �)
and y (k)(�). (b) y (k)(� � �) and y (k)(�).

where is the same as (29), is given in (42), and
is described in (43). Substituting (33), (9c), and (10) into

(9a) gives

(34)

where and are the rational functions corre-
sponding to the optimal cost functions and , respectively.
Based on the facts in (4), the signal in (34) con-
tains the effect of the switching control of the th subsystem, i.e.,

. Itmustbedecomposed into twoparts for thestability
analysis:oneincludes andtheother iswithout it.From
(4b), (6), and (7), the following equation is assume to be true.

(35)
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Fig. 5. Response for Fig. 4 case except d (k) and d (k) in (50a) and (50b). (a) y (k) and y (k). (b) u (k). (c) y (k) and y (k). (d) u (k).

where , , , , and
. Define the difference of as follows:

(36)

Then from (34), (35), and (36)

(37)

where

(38)

(39)

The upper bound of is estimated as follows:

(40)

where , ,
, , satisfying

the following inequality:

(41)

where is the domain containing the
zeros of . The control in (42) is then employed to deal
with the unmodeled dynamics .

if

otherwise
(42)
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Fig. 6. Response of Fig. 5 case except W (z ) = W (z ), i = 1; 2. (a) y (k)(� � �) and y (k)(�). (b) u (k). (c) y (k)(� � �) and y (k)(�). (d) u (k).

where

(43)

The switching gain in (42) satisfies the following inequality:

(44)

where

(45)

(46)

(47)

Theorem 1: Consider the system (4) and the controller (6)
with in (33) and in (42). The polynomials

, and are achieved from (30)–(32).
The inequalities in (40) and (41) are satisfied. Then is
bounded, is bounded in the sense of the minimal
and , and the following performance (48) is accomplished.

(48)

Proof: See Appendix B.
Remark 4: If the upper bound of the system uncertainties

(40) [i.e., ] or the uncertainty of control gain (41) (i.e.,
) is large, the size of dead-zone in (43) will be large.

To preserve the stability, the switching control shuts off as the
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Fig. 7. Frequency response of W (z ) = W (z ).

operating point is in a larger . In fact, the upper bound
of system uncertainties (40) is limited by the inequality

. In addition, the
system performance is less acceptable if becomes large
[refer to (48)]. The tracking performance is expressed in (48),
which indicates the performance of the subsystem is rela-
tively bounded by the output error of the other subsystems. It
also implies that any one subsystem is unstable then the inter-
connected system (1) is unstable. In this situation, from (35) and
(4c) the upper bound of output disturbance must have a limit to
ensure the stability of the closed-loop system.

IV. SIMULATION AND DISCUSSION

This section will give a comparison for the controller de-
sign based on only -optimization, mixed -optimiza-
tion, and the proposed control. Assume that two nominal linear
models for two subsystems are described as follows:

(49a)

(49b)

(49c)

These two subsystems are stable and in nonminimum phase. The
desired trajectory is supposed to be the following form:

, , as ; , , as
; and , , as .

The output disturbances for these two subsystems are assumed
as follows:

(50a)

(50b)

where , , and
s. The reference models are supposed to be

Fig. 8. Output response of Fig. 6 case except W (z ) = W (z ) and
W (z ) = W (z ). (a) y (k)(� � �) and y (k)(�). (b) y (k)(� � �) and
y (k)(�).

,
which contain well-damped poles

and unit static gain. In the beginning, only the -optimiza-
tion with the weighted function

, ,2 is used to obtain the controller
(see Lemma 1). The corresponding response is depicted
in Fig. 2, which is poor. More serious, an inappropriate
selection of this weighted function will bring about insta-
bility; for instance, the response for the weighted function

, ,2,
diverges quickly; for simplicity, it is omitted. The reason is ex-
plained by Fig. 3, which represents the frequency responses of

and where and
. Because is a low-pass weighted

function, the reduction of high-frequency component of the
control input contaminated by the output disturbance is small.
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Fig. 9. Response of Fig. 6 case based on mixed H =H DDVSC. (a) y (k)(� � �) and y (k)(�). (b) u (k). (c) y (k)(� � �) and y (k)(�). (d) u (k).

On the contrary, the frequency response of is a
high-pass weighted function which can effectively attenuate the
high-frequency component of the control input. Although the
controller design in Lemma 1 intends to minimize the energy
consumption and output error, a large constant output distur-
bance deteriorates system performance much. It indicates that
the controller design must deal with the situation often occurs
and is important. According to on the above requirement, the
controller design based on the mixed technique is
employed to deal with the system (49) in the face of the output
disturbance (50).

In the beginning, the design of mixed control is
evaluated for , ,2. Besides ,

,2 the second weighted functions are set as follows:

and
which possess all-pass features with infinity dc gain. Then
the corresponding response is shown in Fig. 4, which are
excellent. Similarly, Fig. 5 depicts the response of Fig. 4

case except that the system is in the face of the output dis-
turbance (50). It reveals that suitable weighted functions
can obtain an acceptable performance. For reducing the
high-frequency component of the control input, the weighted
function is
applied to replace , ,2. The
corresponding response is shown in Fig. 6, which indeed
possesses smaller high-frequency response of the control
input as compared with that in Fig. 4. Fig. 3(a) and Fig. 7
assert the corresponding result. In addition, the output re-
sponses of Figs. 5 and 6 are similar. In short, a suitable

with more weight in high-frequency
range can attenuate high-frequency component of control
input. Furthermore, unsuitable second weighted functions, e.g.,

and
those have

low-pass feature, can not attenuate the effect of high-frequency
of the output disturbance (see Fig. 8). The responses of the
control input are also chattering.
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To improve robust performance and stability, the mixed
DDVSC with the control parameters ,

, , ,
and is
applied to the system (49) with the output disturbance (50). The
corresponding response for Fig. 6 case is shown in Fig. 9. Com-
parison between Fig. 6(b) and (d) and Fig. 9(b) and (d) confirms
that the switching control indeed improves the response of the
control input. The output responses between Fig. 6(a) and
(c) and Fig. 9(a) and (c) are almost the same. Because the
output disturbance is immediately and randomly added into
the system output, they can not immediately eliminate and
attenuate by the control input. On the contrary, the sequences

are applied
to the controller to calculate the control input which is
improved by the switching control. In summary, the switching
control is not necessarily to result in a chattering control input;
on the contrary, a simultaneous enhancement of the control
input and tracking accuracy is achieved. It is different from the
results of traditional variable structure control (e.g., [12]–[14]).

From the above analysis, the advantages of the mixed
DDVSC are given as follows.

1) The mixed DDVSC for the interconnected
system is simple because the system identification and
the controller design of every subsystem are individually
obtained.

2) A suitable selection of weighted functions influences
system performance much. However, the switching con-
trol can further enhance robust stability and performance.

V. APPLICATION TO MOBILE ROBOT

A. Experimental Setup

Consider the car-like mobile robot (CLMR) with two wheels
driving system in Fig. 10. The rear wheels are fixed parallel
to the car chassis and allowed to roll or spin but not slip; two
front wheels are parallel and can simultaneously turn to the
right or left. The system hardware includes two dc motors,
one microprocessor, one expansion circuit I/O card, one LED
(Light Emitter Diode), and mechanism. In order to simulate
the behaviors of a real car, we adopt the mobile robot with
front steering wheels and rear-wheel drive as the chassis
mechanism of the CLMR. Front-wheel and rear-wheel are
individually driven by the same permanent magnet dc motor
(i.e., A-max32 motor of Maxon Co.). The only difference is
the gear ratio; one is 190 : 1, and the other is 51 : 1. Table I
shows the basic specifications of the CLMR. In this paper, the
core of CLMR is the microprocessor with Embedded Linux
Platform ARNUX 7525A. This platform provides fully fledged
Linux development environment by leveraging the generous,
free, and open-sources in Linux world. In addition, the circuit
expansion I/O card integrates three different circuits: 12-bit
D/A Converter (AD7541A), 16-bit Decoder (HCTL2020), and
8-bit A/D converter (ADC0804). There are two DACs, two
decoders, and eight ADCs in this expansion circuit I/O card.
One LED is applied to estimate the position of the CLMR by
one CCD in the height of 2540 mm. In order to design an effec-
tive decentralized controller for a CLMR, two dynamic models

Fig. 10. Experimental setup of the CLMR. (a) Photograph. (b) Block diagram.

TABLE I
BASIC SPECIFICATIONS OF CLMR

are required. Before modeling the dc motors, a proportional
feedback gain (i.e., ) for steering subsystem
[see Fig. 11(a)] is employed to adjust its pole and DC gain. It
is called “enhanced steering subsystem (ESS or ECLMR1).”
Similarly, a forward gain in Fig. 11(b) is applied
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Fig. 11. Enhanced CLMR (ECLMR) by a proportional (feedback or forward) gain. (a) Steering angle. (b) Linear velocity.

Fig. 12. Responses of the CLMR without load. (a) r (t)(� � �), y (t)(�). (b) u (t). (c) r (t)(� � �), y (t)(�). (d) u (t).
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to obtain a unit DC gain of angular velocity subsystem. It is
called “enhanced translating subsystem (ETS or ECLMR2).”
After the model verification (e.g., sinusoidal response), the
corresponding ECLMR is expressed as follows:

(51a)

(51b)

(51c)

B. Response of CLMR Without Load

In the beginning, the CLMR is raised to evaluate the
control performance of dc motors (i.e., steering angle and
angular (or linear) velocity). Fig. 12 shows the response
of two dc motors using the proposed control with pa-
rameters

,
, ,

,
, ,

and the same parameters of the switching control in Fig. 9. It
indicates that the implementation of the proposed control is
also satisfactory.

C. Trajectory Tracking of CLMR

First, a trajectory of “S curve,” which is depicted as the dashed
line of Fig. 13, is planned to test the performance of the proposed
control system. One LED placed on the center of CLMR is de-
tected by CCD in order to calculate the center position of the
CLMR [see Fig. 10(a)]. Then the corresponding experimental
result of the trajectory tracking for the CLMR is presented in
Fig. 13, which has the maximum absolute tracking error 5 cm
and again verifies the usefulness of our control method.

VI. CONCLUSION

In this paper, a mixed optimization for decentral-
ized discrete variable structure control is established. The op-
timal with a suitable weighted function ensures that the
system in the presence of disturbance can obtain smaller en-
ergy consumption with bounded tracking error. The optimal

guarantees that the output disturbance caused by the inter-
actions among subsystems, modeling error, and external load
is attenuated. The proposed mixed optimization does
not need to calculate the Diophantine equation. It possesses
the computational benefits especially for low-order system.

Fig. 13. Tracking response (�) of a CLMR for planning trajectory (� � �).

To further enhance the performance, a switching control in
every subsystem is designed such that the robust performance
and stability are improved. A suitable first weighted function
can attenuate the response of the control input in the desired
frequency range. Moreover, an appropriate second weighted
function for rejecting the related output disturbance is more
important than the role of a switching control. However, the
switching control does not need the information of the output
disturbance and can further enhance system performance. In
addition, the off-line system identification and the controller
design only for each subsystem are required. The stability of
the closed-loop system is verified by Laypunov stability crite-
rion. Finally, the simulations and experiments for the CLMR
confirm the usefulness of the proposed control.

APPENDIX

Appendix A (The Proof of Lemma 1)

Substituting (16) into (15) gives

(A1)

Substituting the factorization
into the (A1)

yields (A2), shown at the bottom of the page. Because
is an inner function,

(A2)
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based on the norm-preserving property of the inner function
(A2) is simplified as

(A3)

Taking the decomposition of the first term in (A3) yields

(A4)

for some polynomials and . Multiplying both
sides of (A4) by gives

(A5)

Because and are coprime, there
exist unique polynomials and , where

and . Or (A5) is rewritten as

(A6)

where for are distinct zeros of
. Finally, is readily determined

from (A5) after obtaining the polynomial from (A6).
Coupling (A4) and (A5) gives

(A7)

By orthogonal, it follows that

(A8)

Therefore, the optimal solution for the cost function (11) is de-
scribed in (17) and (18), and the corresponding optimal value is
given in (19).

Appendix B (The Proof of Theorem 1)

A Lyapunov candidate for the interconnected system is de-
fined as follows:

(B1)

The Lyapunov function defined in (B1) represents the total en-
ergy of the two subsystems in the interconnected system. Then
the change of rate of (B1) is described as follows:

(B2)

where is described in (37). The situation
is first considered. For ensuring the asymptotical conver-

gence of the operating point to a convex subset, it is assumed that
the inequality exists, where

and . Then the following
(B3) and (B4) are achieved by (36)–(39), (B1), and (B2).

(B3)

where

(B4)

If , for then (or
). Because

(B5)

both and for are
achieved. Substituting (40) into (B5) yields

(B6)
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From (B5) and (B6), the result (43) is achieved. In summary,
the switching gain chosen from (44)–(47) makes.

. Then , are bounded and the
performance (48) is accomplished.

Similarly, the case is accomplished.
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